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ABSTRACT ﬁ

- ————

This paper examines the instantaneous, Fourier power spectrum
for different types of input signals such as CW, pulse modulated CW and linear
FM signals using the acousto-optic spectrum analyzer. The effect on the
time-integrated output intensity distribution due to the truncation of the
propagating acoustic signal by the finite aperture width of the Bragg cell
is also analyzed. Some experimental results on pulse-modulated CW and linear
FM signals are presented, and then compared with theory.

RESUME

Ce rapport examine la distribution instantanée Fourier du spectre
de puissance pour aifférents types de signaux d'entrés tel que CW, CW avec
modulation par pulsations, et modulation F.M. linéaire, utilisant l'analyseur
de spectre "Acousto-optic'. L'effet sur 1l'intégration 3 la sortie de la
distribution d'intensité causée principalement par la coupure du signal
acoustic par la largeur limitée de l'ouverture de la cellule Bragg est aussi
analysé. Quelques résultats expérimentaux sur des signaux 3 modulation par
pulsations et modulation FM lin&aire sont présentés et comparés avec la

théorie.
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INTRODUCTLON

Spectrum analysis using acousto-optic diffraction is well known for
its inherent capability of wideband spectrum analysis on a real-time basis
with many simultaneous signals present. The diffraction of a plane wave,
monochromatic, light beam by a single acoustic signal is well understood and
analyzed by W.R. Klein and B.D. Cook (1967) and R. Adler (1967). A coupled
mode formulation is developed by Hecht (1977) for the analysis of acousto-
optic diffraction with multiple acoustic waves at different carrier frequencies.
A review covering the real-time optical Fourier spectrum analysis on topics
such as weighting functions, frequency resolution and side lobe level is also
given by Hecht (1977). TFor small signal analysis, the acoustic signal can
be modelled as a travelling wave phase grating as presented by M. King (1967)
and W.T. Maloney (1969). The emerging light phase front is diffracted in
passing through the modulator which produces an additional quadrature component
of the optical carrier amplitude modulated by the acoustic signal.

In this paper the instantaneous, light intensity distribution in the
frequency plane is computed for different types of input signals using the
travelling wave phase-grating model in the Bragg regime. Time-integrated
output intensity distributions are also plotted for pulse-modulated CW
signals with different pulse-widths and a linear FM. They are then compared
with experimental values.

2,0 THEORETICAL FORMULATION

The schematic diagram of the acousto-optic spectrum analyzer is
shown in Figure 1, with a collimated light wave impinging on the Bragg
cell at the Bragg angle GB. Assuming the Fourier transform lens is ideal,

the diffracted field distribution in the frequency plane in one dimension is
approximately given by:

} - 28, P
Ul(yl,t) = AEg exp [-j2mvu(t - - ] T

i
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D/2
. 2
glyo cos GB - vst) w(yo) exp [-j 7% (yl yo)] dyo W)
-pf2 .
where:

g(yo cos BB - Vst) % g(yo — vst), for GB << 1
is the normalized travelling acoustic signal wave

P = height of Bragg cell aperture

A = a collection of constants including the elasto optic
diffraction efficiency

= acoustic wave velocity

= ¢/v is the optical wavelength

The amplitude weighting window function [w(yoe)] which includes
the truncated Gaussiau beam profile and the acoustic attenuation is given by:

w(ye) = exp [-a(f) T L+ 4) - 21 97 @

i Where T specifies the truncated Gaussian beam profile, a is the
! acoustic loss coefficient in nepers/sec and T is the acoustic transit time
across the aperture.

Equation (1) can be rewritten as a convolution of the spatial
Fourier transform of the input signal and the Fourier transform of the
amplitude weighting function as follows:

- 2F, 4 P
U (yl.t) = AEg exp [-j2mv(t - - ) ] ¥ -
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(3 '
where
D/2
! G(f/vs) = -D/2 glyo ~ vst) exp [-j2nf YO/Vs] dyo
(4)

4
:

D/2
5 1 / 1
i WGF - f/vs) = w(yo) exp [-j2my, GF - f/vs)] dyo

-D/2 (5)

2.1 CW and Pulse-modulated CW Carriers
4 Both types of signals are characterized by a constant carrier and
are expressed by

glyo - vst) = Re {A(yo - vst) exp [j2m f/vs (yo - vst)]}

where A(yo - vst) is the amplitude function of the signal

2.2 Linear FM

A linear FM can be expressed by
! ' glyo - vst) = Re { (A(yq - vst)] exp { j2ﬂ[f/vs (Yo - Vst)
i

E 5 2 on vl




—— e,

RN P osevey Qi WA i QTS e X v i R a2 gty < - B - e E e rae AR

where fo ls the centre frequency and k i{s the rate of change of frequency
in (HZ/sec).

3.0 EXPERIMENTAL ARRANGEMENT

The schematic arrangement of the experimental acousto-optic spectrum
analyzer is shown in Figure 1. he optical source is the Spectra Physics
Model 1248 helium neon laser which delivers 15 mw of coherent optical power
at 0.6328 nm. The laser beam is expanded in one dimension by the beam
expander to a width of 20.5 mm with a Gaussian intensity profile truncated
at 1/e? points. The bulk Bragg cell used is the FJW D-150 Acousto-optic
deflector with the Zenith phased array transducer giving a bandwidth of about
100 MHZ at a centre frequency of 150 MHZ. The aperture dimensions used in
the experimental measurements are 2 mm by 20.5 mm with a corresponding
transit time of 5 usec. The acoustic loss coefficient is measured to be
0.5 nepers/5 usec at the centre-frequency. A thin circular Achromat lens
of diameter 50.8 mm with a focal length of 0.4 m is used to Fourier trans-
form the weighted signal as it forms the far-field intensity distribution in
its back focal plane. 7“he lens was tested and found to produce negligible
phase error for low spatial frequencies. The output intensity distribution
is detected and integrated on the Fairchild CCD 110/110F linear image sensor
with 256 elements. The cell size is 13 um by 17 um on 13 um centers with a
channel stop width of 5 um. The information stored in the elements are
clocked out serially by CCD shift registers and displayed on an oscilloscope.

4,0 COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL RESULTS FOR
PULSE MODULATED CW SIGNALS

Using eq. (1), the envelopes of the instantaneous power spectra for
a 5 psec pulse modulated CW at 150 MHZ are plotted in Figures 2 and 3. They
are plotted at different instants of time as the pulse propagates across the
Bragg cell. The acoustic signal is attenuated and illuminated by different
portions of the Gaussian profile on its course through the aperture. The
effect of the amplitude weighting function is to broaden the main lobe,
suppressing the side-lobe levels and filling up the nulls. Shown in Figure
2 are the two plots of the instantaneous power spectra; one with the signal
completely coincident with the aperture and the other one with a quarter of
the pulse interacting. As can be seen from the graph, the truncation of the
signal by the finite aperture causes the frequency components to spread out
with a corresponding drop in power. 7The instantaneous spectrum at another
instant of time with half of the pulse interacting is shown in Figure 3. A
listing of the computer program is given in Appendix A.
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Summing up all the spectra at different instants of time, an
integrated power spectrum is obtained and shown in Figure 4. The total
integration time is 10 psec which is the time interval for the pulse to
transit the aperture. Figure 4 also shows the spectrum of a CW signal
integrated for the same interval of time, or equivalently, it is the
spectrum of a stationary 5 usec-pulse filling up the aperture and time
integrated for 10 usec. By comparing the two plots, the effect due to the
truncation of the signal by the finite aperture is to broaden the main lobe
and to smooth out the side lobes. The two output waveforms are also measured
experimentally and shown in Figures 5(a) and 5(b). Identical photo-cells are
used in recording the two waveforms in order to minimize rie effect of cell
response variations. As can be seen from the figures, there is a definite
spread in the main lobe due to the truncating effect. No attempt is made

1 here to compare the theoretical and experimental results in detail because
the width of the power spectrum is comparable to the size of a photo-cell
and the cell to cell boundary structure introduces distortion.

Theoretical results are plotted in Figures 6 and 7 for a 1 usec
and 2 usec pulse modulated carriers along with the corresponding experimental
measurements shown in Figures 8(a) and 8(b). For these two cases, the main
lobe covers a number of cells and the error introduced by the structure of
the cell beundary becomes less important. The light intensity distribution
is graphically integrated with a cell width of 13 pym and the results are
tabulated in Table I along with the experimental values. Some of the
possible sources of error in the measurement system are as follows:

a) The lenses used in the beam expander and the Fourier
. transform are not ideal.

b) There is error introduced by representing the beam
profile with an ideal truncated Gaussian distribution.

?} ¢) There is error due to the cell-to-cell boundary
structure and the photo response non~uniformity of
the cells.
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Figure 8 (a) - CW AND Z uSEC PULSE MODULATED CW
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Figure 8 (b) - CW AND 1 uwSEC PULSE MODULATED CW

I'NTEGRATED LIGHNT INTENSITY DISTRIBUTION IN THE
FREQUENCY PLANE DETECTED BY PHOTO DETECTCR ARRAY
(CKLL 70 CELL CENTRE SPACING = 13 um, INTEGRATIO!
TIME = 50 uSEC)
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TABLE I

COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL INTEGRATED INTENSITY
DISTRIBUTION FOR A 1 USEC AND 2 uSEC PULSE MODULATED CW SIGNAL

PULSE-WIDTH 1-uSEC 2-uSEC
IN WSEC CW = 150 MHZ CW = 150 MHZ
Theoretical Experimental Theoretical Experimental
Intensity Intensity Intensity Intensity

CENTRE CELL

(Normalized to 1 1 1 1
Unity

1st Cell from 0.87 0.875 0.70 0.61
Centre

2nd 0.64 0.60 0.21 0.15
3rd 0.36 0.4
4th 0.17 0.13

The experimental results shown in Figures 8(a) and 8(b) agree
reasonably well with the theoretical calculations if the sources of error
are taken into account.

5.0 COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL RESULTS FOR A
5 USEC PULSE MODULATED LINEAR FM SIGNAL

Using eqs. (1) and (7), the instantaneous power spectra of a
linear FM signal are plotted in Figures 9 and 10 for different instances
of time. The duration of the signal is 5 psec with a centre frequency of
150 MHz and a frequency excursion of 2 MHz. The theoretical time-integrated
power spectrum is plotted in Figure 11 and the power spectrum of the same
signal, but stationary in the aperture and time-integrated for the same
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interval of time, is also plotted for comparison. An enlarged plot showing
the main lobe structures is given in Figure 12. As expected, there is a
spread in frequency and smoothing of the side lobes for the time-integrated
output due to the truncation of the signal by the finite aperture width.
The experimental output power spectrum is also measured and shown in Figure
13. Some comparisons between the experimental and theoretical values are
tabulated in Table II. The theoretical pow-r spectrum is graphically
integrated with a cell width of 13 um and again they agree reasonably well.

TABLE I1

COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL
INTEGRATED INTENSITY DISTRIBUTION FOR THE LINEAR FM SIGNAL

LINEAR FM
PULSE WIDTH = 5 upSEC THEORETICAL EXPERIMENTAL
fo = 150 MHZ INTENSITY INTENSITY
Af = 2 MHZ
CENTRE CELL
(at 150 MHz, 1 1
Normalized to
Unity)
1st Cell on
Right of Centre 0.78 0.79
Cell
2nd 0.62 0.33
3rd 0.32 0.10
1st Cell on
Left of Centre 0.93 0.85
Cell
2nd 0.95 0.87
3rd 0.59 0.77
4th 0.29 0.43

e o A M e
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THE FREQUENCY PLANE OF A & uSEC PULSE
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= 13 wm, INTEGRATION TIME = 50 uSEC)




21

- & WO

’ 6.0 CONCLUSIONS

In general, the experimental results agree well with theory for
pulse modulated CW and linear FM signals. The effect on the integrated
output due to the truncation of the signal by the finite aperture is to
broaden the main lobe and smooth out the side lobes.

The theoretical and experimental results for linear FM signals show
that there is considerable broadening of the spectra due to the fact that the
frequency is modulated. The important noint is that the power spectra of this
type of signal is reproduced even thuugh the spatial structure of the acoustic
signal in the Bragg cell is now complex.

] The combination of theoretical and experimental results available
at this tiwe indicate that the acousto-optic receiver can be used to give an
; accurate and instantaneous description of the power spectrum of several types
E of signals commonly encountered in ESM applications.
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APPENDIX A

COMPUTER PROGRAM LISTING
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. c * THIS PROGRAM 16 URITTEM TO CALCULATE THE INTENSITY DISTRIBUTION
- c IN THE PL FOR DIFFERENT TYPES OF SIGNALS WITH GAUSSIAM
. g ILLUNINATION DISTRIBUTION AND ACOUSTIC LOSS
. ¢ FO - CENTRE FREGUENCY OF SIGNAL
.73 ¢ Tt - TOTAL TRANSIT TINE
;a ¢ ALAR - OPTICAL UAVELEMNGTH
. ¢ F - FOCAL LENGTH
i 768 C D - APERTURE WIDTH
‘ T C ALFA - ACOUSTIC LOSS COEFF ICIENT
.79 C TT - GAUSSIAN BEARN PROFILE CONSTANT
790 € AKX - LINEAR FM CHAMNGING RATE
800 C
900 C
1.008 DIMEMSION Ef(2232),E2(222),E3(222),Y1(222), va(222)
1.064 DIMENSION v3(222),Y4(222),Y5(222,50)
1.100 €1(1)-221.5 EB(1)2B1.5 E3(1)°821.) Yi(1le22l.
1.118 va(1) <221,
1.15¢ DO 21 MR- 1,2
1.200 URITE(2,11)
1.300 11 FORMAT(/ +  y-POSITION(MN) ARPLITUDE
1.400 1 INTENSITY NORRALIZED INTENSITY’)
1.608 Fe-1.50E+6
1.650 Tte 1.6E-5 2.5
1.700 ALAM- §.32BE-7
1.800 Fe.,4
1.900 De.04t/2.
2.080 VS=D/T1
2.010 ALFA *1./T1 2.5
2.020 €3+ -ALFARTL/D
2.030 TTe1.
2.040 C4e 2.%2 TY/D
2.108 Ple3.14169
a.110 AKe FO/T120.
2.12¢ CS~ AK/(2.8U53VS)132.3P1
2.200 I1-221
2.300 DO 10 1e1,I1
! 2.400 v+ FOSALAMEF VS
‘ 2.500 yye 1. -(1. /90.43 CCII-1) /2 ~(I-1))) .
' 2.660 A --Ds2. i
2.700 B =D/2. -D/4.X3.3(MN-1) :
2.710 Cie 2.8PISFO/VS
2.720 c2- -C1avy
2.800 NS
2.900 TOL-0.
3.000 KK=9
3.100 2 CALL GAUQUS (A,B,P1.X,TOL,N,KK) ;
3.200 KK XK +1 :
| S R N A |
. . - o !0 )lx +CSEXEX) SEXP(CIEXN-( X)zs2)
3.600 GO T0 2 3 Cas 2 ]
3.700 3 RE-P1
3.710 4 CALL GAUQUS (A,D,P2,X,TOL,N,KK)
3.720 KK =KK+1
155 S -t Tt
. - [ 19 )IX +COEXEX) BEXP( -
3.748 G0 10 4 CIXX-(CAEX)222)
3.8%e s w"samazut
. . SAIRSAIN) 21000. SEXP(- s2.
2.880 AIN- ARPTARP EXP(-ALFAST1/2.)
. Y1(145)  YVEVEI008, +Y31000.399.
3.910 Y4(Ie1) o Yi(1+1)/1000. X( US/(ALAMSF))

Ge 1%
T‘::;?ng p U >
¥

{ : e - S




13 YR(I41) oAIN
< Y3(1+1)onmP
4. 10 CONTINUK
s. DO 18 Me1,11
R IF (M-8) > 56,31
=o= MW ELAL) » vium 1/VB((1143)/R)
-1 ALYEC(I103)/8
! 8.188 £1(Ne1) *10.3 v.amnumn
s. 20 FORMAT(F18.5,F18.4,340,8F80.4)
8.100 Q0 10
8.800 31 ER(AH) *10.5L0816¢ VE(Re3)/AL)
3 8.300 Q0 10
S.400 30 E3(M+1) «10.3L0810¢ YB(R41)/AL)
8.500 ARe1.
9.000 12 CONTIMUE
9.100 21 CONTIME
18.000 CALL INITT(189)
18.300 CALL BINITT :
18.400 CALL GHECK(V1 K1) i
18.500 CALL DOPLAY(Yi.E ;
18.510 cALL H !
18.610 CALL INITT(188) |
18.620 CALL BINITY i
18.639 CALL CHECK(Y4,E1) J
18.800 cALL
18.658 CALL (v4,£2)
18.600 CALL FINITT(S,708)
19.000 s70P
£9.000 ) .
21.000 SUBROUTINE QAUQUS (DD, BB, FX, X, TOL, NN, K)
28. 900 DINENSION AD(39), AC(30), AB(4), AlS,B)
23.000 EQUIVALENCE (A(1,1),AB(1)), (A(7.4),A8(1)),(A(5,8
24.000 1),AD(1))
25.000 DATA AB/2., 2911041, .304114. S7e0TER,
26.000 1 7244177, .B482068, .9ITRTI4, .SETE0RS,
27.000 1 .S555656, .SSEESED. .2304583, .4484088 1
28.000 1, .6423492, .uamx. JPL75984, .9841831,
39.000 1°.2360289, . , jaessem,
31.000 1 .5190061. .'masa. 8870626 ]
32.000 1 .120488,° 2797984, .3818301, .«'nni
33.000 1 .3242834, .6133714/
34.000 DATA AC/ .8360311, .D681002, .8127430E-1,
3%.000 1 .1906482, .2606107, .3123471, .2308304,
36.000 1 40584852, .7415312, 0401079, .S566887E-1
20.000 1, .1356804, .1862002, .2331938, .268004%,
“om I 3' o“‘ . -mlt“o
41.008 ] .09212185. .xm'm. ‘.rn'mn. mgk .
. cm o“" “~de
prit+d 1 aTA A0/ qi&:‘“’f&iﬁ“ 1964215, 2085782/
) P » o o o
45.000 IF(TOL.LE.O.) TOLo1.6-4
48.000 Ke
47.008 TFiko4) 400,300,001
48.008 400 1F(K-2) €81,301,308
©.000 001 SUN-0.0
50.000 IND-
51.000 9D
o~ Pe
$3.000 Ne(Nite1 )78
54.098 000 1 .. 4
26,00 18 siif -(3-D)2
o . .
"0“ m '(.’.’/.-
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X=8CL2
K=g
RETURN
FOsFX
JeoN
CALC2<8.
I=1

Ne9-J
1F(1.EQ.J ) GO YO0 3

Leg-
X-A(L.R) E8CLIeSCLR
RETURN

TERP ~FX
:-(-A(L JM) ) ZCLI+SCLR

RETURN
?A!!.Cf'CM.CE ML, IIX(TERPFX)
oI+

IF(I.LT.J) GO TO 22

CALC2-CALCR ¢ A(I,1) 3FO

CALC2 'OﬁLCZtSCLl

IF(17.ME.0) GO T

lF(hlStCALCl).GT ) GO TO 1118
XF(ABS(O‘LC!-CM.CE) .T.TOL) GO TO0 S

C0 70 6

IF (ABS( (CALC1-CALC2)/CALC1) .LT. TOL) GO TO 6
CALC1+CALC2
Jelsl

IF(3-8) a1,24,11
FHALF =FHALF +CALCR2
IF(IT.NE.L) GO TO 15
SAVE«FHALF
SCL1=(PREND-B)/2.
SCLE~(PREND+B)/2.

ITe2

GO TO 13
IF (ABS( (FHALF-CALC1 )/RERR).LT.TOL) GO0 TO 16

SUN= SUM+FHALF

IF (PREND.GE.RMEND) GO TO 114
D=PREND

B=RHEND

INDe1

N8

FHALF <0.0

RETURN
IF(IND.GT.0) GO TO 110
g
Ne8 Q&

138 PREND =B

v}
Be(BeD) 2. ‘@}

Fatr-v.o S5
GO To 12 N
END
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